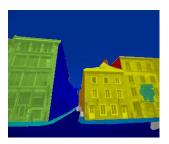
Image Quality Assessment for Photo-consistency Evaluation on Planar Classification in Urban Scenes

M.-A. Bauda^{1,2}, S. Chambon¹, P. Gurdjos¹ and V. Charvillat¹

¹ University of Toulouse, IRIT - INP - ENSEEIHT ² imajing sas

ICPRAM 2015



Context

Context

Set of calibrated images

Semantic ground truth

Main goal - Semantic segmentation

Context

Set of calibrated images

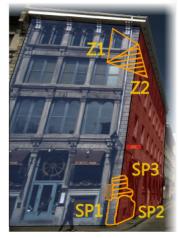
Flatness ground truth

Main goal - Semantic segmentation **Paper issue -** Relation between surface flatness and photo-consistency measure

Intermediate Features

Aim - SuperPixels (SP) photometrically coherent on multiview

Intermediate features


Intermediate Features

Intermediate features

Aim - SuperPixels (SP)
photometrically coherent on
multiview
Intermediate goal - Planar
classification for triangular mesh
(P/NP)

Intermediate Features

Intermediate features

Aim - SuperPixels (SP) photometrically coherent on multiview

Intermediate goal - Planar classification for triangular mesh (P/NP)

Idea

Integration of the geometrical information in SP constructor

Photo-consistency Measure for P/NP Classification

- Inputs Calibrated multiview images and sparse 3D point cloud
- Hypothesis Piecewise planar smooth surfaces
- Tools -
 - Homography estimation
 - Photo-consistency

Photo-consistency Measure for P/NP Classification

- Inputs Calibrated multiview images and sparse 3D point cloud
- Hypothesis Piecewise planar smooth surfaces
- Tools -
 - Homography estimation
 - Photo-consistency

Planar case - high similarity

Non-planar case - low similarity

Table of contents

- State-of-the-Art
- Photo-Consistency Measures
- IQA Evaluation Protocol
- Overview

Table of contents

- State-of-the-Art
- 2 Photo-Consistency Measures
- IQA Evaluation Protocol
- Overview

State-of-the-Art

- Single view approaches
 - SP over-segmentation method [Felzenszwalb and Huttenlocher, 2004]
 - Geometry as a prior knowledge [Hoiem et al., 2008]

State-of-the-Art

- Multiview approaches
 - Piecewise planar assumption
 [Gallup et al., 2010]
 - Photo-consistency constraint [Toldo and Fusiello, 2010]

Motivations

- Intermediate features
- Geometry and planar surfaces
- Photo-consistency
- ⇒ Evaluation protocol for photo-consistency measures

Table of contents

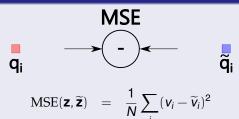
- State-of-the-Art
- Photo-Consistency Measures
- IQA Evaluation Protocol
- Overview

Photo-Consistency Measures

Definition

Context

Photo-Consistency Measure or Image Quality Assessment (IQA) quantification of photometrical similarity between a reference region z and a target region \tilde{z}


Analysis of two types of measures:

- Euclidean Distance-based Measures
- Cosine Angle Distance-based Measures

7/18 **ICPRAM 2015** M.-A. Bauda

- N number of pixels in z and \tilde{z}
- v_i color value of the pixel q_i in the reference image
- \tilde{v}_i color value of the pixel \tilde{q}_i in the warped image
- r size of the neighbourhood used

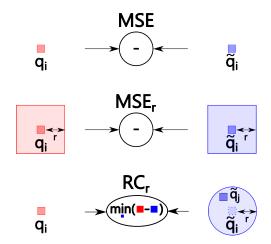
Mean Square Error

8/18

- N number of pixels in z and \tilde{z}
- v_i color value of the pixel q_i in the reference image
- \tilde{v}_i color value of the pixel \tilde{q}_i in the warped image
- r size of the neighbourhood used

Generalised MSE

$$MSE_r(\mathbf{z}, \widetilde{\mathbf{z}}) = \frac{1}{N} \sum_i \left[\frac{1}{(2r)^2} \sum_{j \neq |q_i - q_j| \leq r} (v_j - \widetilde{v}_j)^2 \right]$$


8/18

- N number of pixels in z and \tilde{z}
- v_i color value of the pixel q_i in the reference image
- \tilde{v}_i color value of the pixel \tilde{q}_i in the warped image
- r size of the neighbourhood used

r-Consistency [Kutulakos, 2000]

$$\begin{array}{c} RC_r \\ \hline q_i \end{array}$$

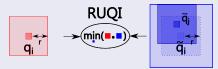
$$\mathrm{RC}_r(\mathbf{z}, \widetilde{\mathbf{z}}) = \frac{1}{N} \sum_i \left(\min_{j \ / \ (q_i - q_j)^2 < r^2} |v_i - \widetilde{v}_j| \right)^2$$

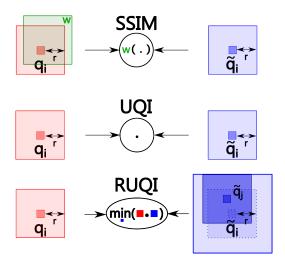
- $\mu_{\mathbf{z}}$ (resp. $\mu_{\widetilde{\mathbf{z}}}$) the mean of v_i (resp. \widetilde{v}_i) on z (resp. \widetilde{z})
- σ_z (resp. $\sigma_{\widetilde{z}}$) the standard deviation of v_i (resp. \widetilde{v}_i)
- $\sigma_{z\tilde{z}}$ the covariance of z and \tilde{z}

Structural Similarity Measure [Wang et al., 2004]

$$\begin{split} \mathrm{SSIM}(\mathbf{z},\widetilde{\mathbf{z}}) &= I(\mathbf{z},\widetilde{\mathbf{z}}).c(\mathbf{z},\widetilde{\mathbf{z}}).s(\mathbf{z},\widetilde{\mathbf{z}}) \\ &= \frac{2\mu_{\mathbf{z}}\mu_{\widetilde{\mathbf{z}}} + \alpha}{\mu_{\mathbf{z}}^2 + \mu_{\widetilde{\mathbf{z}}}^2 + \alpha}.\frac{2\sigma_{\mathbf{z}}\sigma_{\widetilde{\mathbf{z}}} + \beta}{\sigma_{\mathbf{z}}^2 + \sigma_{\widetilde{\mathbf{z}}}^2 + \beta}.\frac{\sigma_{\mathbf{z}\widetilde{\mathbf{z}}} + \gamma}{\sigma_{\mathbf{z}}\sigma_{\widetilde{\mathbf{z}}} + \gamma} \end{split}$$

- $\mu_{\mathbf{z}}$ (resp. $\mu_{\widetilde{\mathbf{z}}}$) the mean of v_i (resp. \widetilde{v}_i) on z (resp. \widetilde{z})
- σ_z (resp. $\sigma_{\widetilde{z}}$) the standard deviation of v_i (resp. \widetilde{v}_i)
- $\sigma_{z\tilde{z}}$ the covariance of z and \tilde{z}

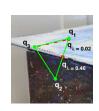

Universal Quality Image [Z. Wang and Bovik, 2002]

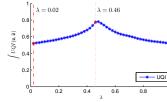

$$UQI(\boldsymbol{z},\widetilde{\boldsymbol{z}}) \ = \ \frac{4\sigma_{\boldsymbol{z}\widetilde{\boldsymbol{z}}} \ \mu_{\boldsymbol{z}}\mu_{\widetilde{\boldsymbol{z}}}}{(\sigma_{\boldsymbol{z}}^2 + \sigma_{\boldsymbol{z}}^2) \ [\mu_{\boldsymbol{z}}^2 + \mu_{\widetilde{\boldsymbol{z}}}^2]}$$

- $\mu_{\mathbf{z}}$ (resp. $\mu_{\widetilde{\mathbf{z}}}$) the mean of v_i (resp. \widetilde{v}_i) on z (resp. \widetilde{z})
- σ_z (resp. $\sigma_{\widetilde{z}}$) the standard deviation of v_i (resp. \widetilde{v}_i)
- $\sigma_{z\tilde{z}}$ the covariance of z and \tilde{z}

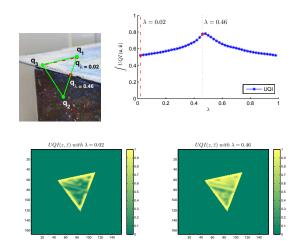
RUQI (Proposed measure)

$$\text{RUQI}(\mathbf{z}, \widetilde{\mathbf{z}}) = \frac{1}{N} \sum_{i} \left(\max_{j / (q_i - q_i)^2 < r^2} (\text{UQI}(\xi_i, \widetilde{\xi}_j)) \right)$$




Table of contents

- State-of-the-Art
- 2 Photo-Consistency Measures
- IQA Evaluation Protocol
- Overview

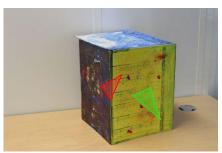


IQA Protocol Evaluation

IQA Protocol Evaluation

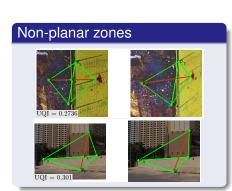
Non-planar triangle: Variation of IQA with different λ

Algorithm

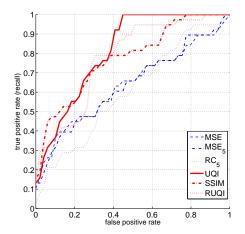

Context

- Estimation of right value λ*
- Estimation of homographies
- **o** For each $\lambda \in [0, 1]$
 - **1** Estimation of the warped image depending on λ
 - Computation of the IQA value
- Classification in P/NP region based on the IQA value

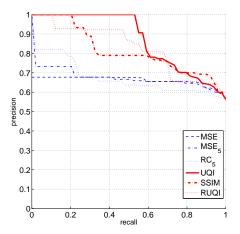
Experiment


Context

Input data - Real data with controlled and uncontrolled lighting **Tests -** 6 measures on 87 triangles (58% NP)



Results (1)


Results (2)

Receiver Operator Characteristic (ROC) curve

16/18

Results (3)

Precision-Recall (PR) curve

Table of contents

- State-of-the-Art
- 2 Photo-Consistency Measures
- IQA Evaluation Protocol
- Overview

Context

Contributions

- IQA protocol evaluation for P/NP classification
- 'SSIM' more efficient than 'MSE'
- UQI overcomes all measures

Future work

- IQA integration in SP constructor
- Cut non-planar zone

References I

Felzenszwalb, P. and Huttenlocher, D. (2004).

Efficient graph-based image segmentation. In *IJCV*.

Gallup, D., Frahm, J.-M., and Pollefeys, M. (2010).

Piecewise planar and non-planar stereo for urban scene reconstruction. In IEEE CVPR.

Hoiem, D., Efros, A., and Herbert, M. (2008).

Closing the loop on scene interpretation.

Approximate n-view stereo. In ECCV.

Toldo, R. and Fusiello, A. (2010).

Photo-consistent planar patches from unstructured cloud of points. In *ECCV*, pages 589–602.

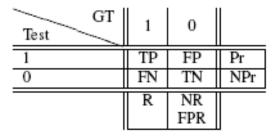

Wang, Z., Bovik, A., Sheikh, H., and Simoncelli, E. (2004).

Image quality assessment: From error visibility to structural similarity. In IEEE TRANSACTIONS ON IMAGE PROCESSING.

Z. Wang, Z. and Bovik, A. (2002).

A universal image quality index. In IEEE Signal Processing Letters.

Binary classification evaluation