GEOMETRY-BASED SUPERPIXEL SEGMENTATION

Marie-Anne BAUDA, Sylvie CHAMBON Pierre Gurdjos, Vincent Charvillat

bimajing

mbauda@enseeiht.fr

PROBLEM

Obtaining a semantic segmentation from calibrated multi-view

Difficulties:

- 1. Low texture difference between two surfaces in natural and artificial scenes
- 2. Sparse 3D point clouds generally unstructured and unmeaning

Input Data:

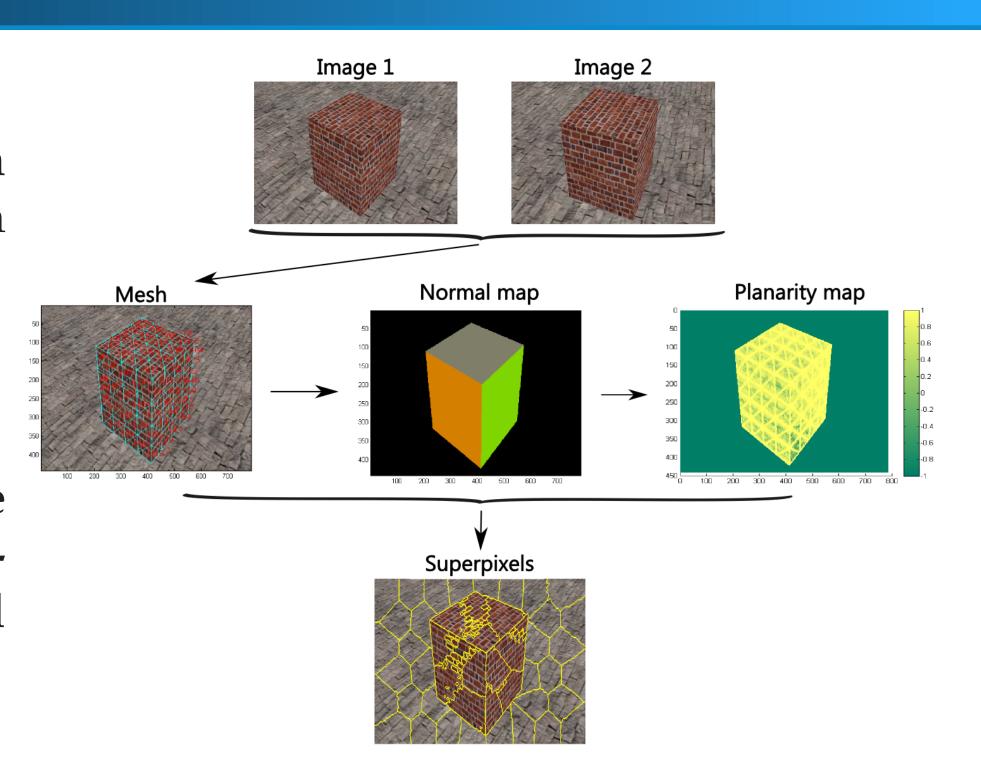
- Two calibrated images
- A sparse 3D point cloud

OVERVIEW

Proposition of a new over-segmentation constructor in the same way of the well known k-means superpixel approach [1], based on:

- 1. Geometry extraction
- 2. Superpixel construction

More precisely, we introduce a new distance that combines photometric and geometric aspects in the aggregation step of the superpixel construction.



Original Superpixel (SP_{5D}) [1]

Proposed Superpixel (SP_{qeom})

1. GEOMETRY EXTRACTION

Two types of geometric information extracted (see overview)

- Normal map provides a surface normal \vec{n}_i to each pixel p_i
- Planarity map gives similarity measure, from Universal Quality Index (UQI) [4] between a reference image and a warped adjacent image estimated through the homography induced by the plane of support [2, 3]

2. SUPERPIXEL CONSTRUCTION

Introduction of geometric information in the approach Simple Linear Iterative Clustering, (SLIC) [1]. Originally, it provides compact and uniform in size superpixels, based on a 5D kmeans clustering (3D for colors and 2D for space), by following these three steps:

- 1. Initialise seeds on a regular grid
- 2. Compute iteratively superpixels until convergence
 - (a) Aggregate pixels to a center by minimizing the aggregation distance
 - (b) Update position center (mean on each cluster)
- 3. Enforce connectivity on small entities

AGGREGATION DISTANCE DESCRIPTION

Aggregation distance between a seed p_i and $p_i \in \mathcal{V}(p_i)$ with \mathcal{V} the considered neighbourhood

State of the art distance [1]

$$D_{5D}(p_j, p_i) = \sqrt{d_c + \frac{m}{S} d_s}$$

Colour distance

$$d_c(p_j, p_i) = (l_j - l_i)^2 + (a_j - a_i)^2 + (b_j - b_i)^2$$

Space distance
 $d_s(p_j, p_i) = (x_j - x_i)^2 + (y_j - y_i)^2$

- (l, a, b) the 3 channels in Lab color space
- (x, y) the pixel coordinates
- m the weight of the relative importance between d_c and d_s
- $S = \sqrt{\frac{N}{K}}$
- N the number of pixel in the image
- K the number of desired superpixels

New energy introduced

$$D_{geom}(p_j, p_i) = \sqrt{d_{c_0} + \alpha \cdot d_{s_0}^{\beta} + d_g}$$

Normalised colour distance

$$d_{c_0}(p_j, p_i) = \frac{d_c(p_j, p_i)}{\max_{p_k \in \mathcal{V}(p_i)} (d_c(p_k, p_i))}$$
Normalised space distance
$$d_{s_0}(p_j, p_i) = \frac{d_s(p_j, p_i)}{\max_{p_k \in \mathcal{V}(p_i)} (d_s(p_k, p_i))}$$

Geometric distance

Orientation term
$$d_{\vec{n}}(p_j,p_i) = \frac{1+\cos(\vec{n}_j,\vec{n}_i)}{2}$$
 Planarity term $d_{UQI}(p_j) = UQI(p_j).1_{UQI>0}$

$d_g(p_j, p_i) = 1 - d_{\vec{n}}(p_j, p_i).d_{UQI}(p_j)$

superpixels number

RESULTS

REFERENCES

- R. Achanta and A. Shaji and K. Smith and A. Lucchi and P. Fua and S. Susstrunk SLIC Superpixels Compared to State-of-the-art Superpixel Methods, In IEEE PAMI, 2012
- [2] M.-A. Bauda and S. Chambon and P. Gurdgos and V. Charvillat Image Quality Assessment for Photoconsistency Evaluation on Planar Classification in Urban Scenes, In ICPRAM, 2015
- [3] R. I. Hartley and A. Zisserman Multiple View Geometry in Computer Vision, 2004
- [4] Z. Wang and A. Bovik A universal image quality index, In IEEE Signal Processing Letters, 2002

CONCLUSION AND PERSPECTIVES

This approach provides superpixels consistent with the scene geometry when the mesh matches with the real surfaces. In perspective, we have to include a cutting process on nonplanar faces and to generalise the approach on real images.

20 40 60 80

20 40 60 80